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What is Mathematical Induction?

A proof technique to establish that a statement P(n) is true
for all positive integers n.
Based on the principle: if a statement holds for a base case
and can be shown to hold for the next case, it holds for all
cases.
Two key steps:

1 Base Case: Prove the statement for the smallest value of n
(usually n = 1 or n = 0).

2 Inductive Step: Assume the statement holds for n = k
(inductive hypothesis), and prove it for n = k + 1.
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Principle of Mathematical Induction

Formal Statement
To prove P(n) is true for all n ≥ n0:

Base Case: Show P(n0) is true.
Inductive Step: Assume P(k) is true for some k ≥ n0
(inductive hypothesis). Prove P(k + 1) is true.

If both steps are proven, then P(n) is true for all n ≥ n0.
Analogy: Like climbing a ladder—prove you can start (base
case) and move to the next rung (inductive step).
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Example: Sum of First n Positive Integers
Statement

Prove: 1 + 2 + · · · + n = n(n+1)
2 for all n ≥ 1.

Base Case (n = 1):

1 = 1(1 + 1)
2 = 1

Holds true.
Inductive Step: Assume true for n = k:

1 + 2 + · · · + k = k(k + 1)
2

Prove for n = k + 1:

1+2+· · ·+k+(k+1) = k(k + 1)
2 +(k+1) = k(k + 1) + 2(k + 1)

2 = (k + 1)(k + 2)
2

Holds true.
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Strong Induction

A variation of mathematical induction.
Base Case: Same as standard induction (prove for smallest
n).
Inductive Step: Assume P(m) is true for all m ≤ k, and
prove P(k + 1).
Useful when proving P(k + 1) requires more than just P(k).

Example Use Case
May sometimes make proofs easier.
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Summary

Mathematical induction proves statements for all positive
integers.
Requires a base case and an inductive step.
Strong induction allows assuming all previous cases in the
inductive step.
Applications: Summations, inequalities, divisibility, and
recursive definitions.

Key Takeaway
Induction is a powerful tool for proving statements about infinite
sets by reducing them to finite steps.
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Why Multiple Base Cases?

Some proofs require more than one base case, especially in:
Strong Induction: Inductive step may depend on multiple
previous cases.
Recursive Definitions: Statements defined using several prior
terms (e.g., Fibonacci: F (n) = F (n − 1) + F (n − 2)).
Problems where the smallest n needs extra cases to establish
the pattern.

Multiple base cases ensure the inductive step can "reach
back" to valid cases.

Key Idea
The number of base cases depends on how many prior values the
inductive step needs.
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Example: Fibonacci Numbers Are Positive

Statement
Prove: Fibonacci numbers F (n), defined by F (1) = 1, F (2) = 1,
F (n) = F (n − 1) + F (n − 2) for n ≥ 3, are positive for all n ≥ 1.

Base Cases:
n = 1: F (1) = 1 > 0.
n = 2: F (2) = 1 > 0.

Inductive Step (Strong Induction):
Assume F (m) > 0 for all m ≤ k, where k ≥ 2.
Prove F (k + 1): Since F (k + 1) = F (k) + F (k − 1), and
F (k) > 0, F (k − 1) > 0 by hypothesis, so F (k + 1) > 0.

Two base cases needed because F (k + 1) depends on F (k)
and F (k − 1).
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Example: All Horses Are the Same Color

Claim (Flawed)
All horses in any set of n horses are the same color.

Base Case: For n = 1, one horse has its own color. True.
Inductive Step: Assume true for n = k: any set of k horses
is the same color.
Prove for n = k + 1:

Take a set of k + 1 horses: {h1, h2, . . . , hk+1}.
Subset {h1, . . . , hk} has k horses, so all are the same color (by
hypothesis).
Subset {h2, . . . , hk+1} has k horses, so all are the same color.
Since h2 is in both subsets, all k + 1 horses are the same color.
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Why the Horse Proof Fails

The inductive step fails for n = 2 (base case is n = 1):
For k = 1, consider {h1, h2}.
Subset {h1} has one horse, {h2} has one horse—both trivially
true.
But no overlap exists (no common horse), so we cannot
conclude h1 and h2 are the same color.

Lesson: The inductive step must hold for all cases, including
the transition from base case to the next step.
Fix: Adding a base case for n = 2 reveals the flaw, as two
horses may differ in color.
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What is Strong Induction?

A variation of mathematical induction for proving statements
P(n) for all positive integers n.
Differs from standard induction in the inductive step:

Base Case: Prove P(n) for the smallest value(s) (e.g., n = 1
or multiple base cases).
Inductive Step: Assume P(m) is true for all m ≤ k, and
prove P(k + 1).

Useful when P(k + 1) depends on multiple previous cases, not
just P(k).
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Principle of Strong Induction

Formal Statement
To prove P(n) is true for all n ≥ n0:

Base Case: Show P(n0), P(n0 + 1), . . . for necessary starting
values.
Inductive Step: Assume P(m) is true for all m where
n0 ≤ m ≤ k. Prove P(k + 1).

If both steps hold, P(n) is true for all n ≥ n0.
Analogy: Like climbing a ladder, but you can use all previous
rungs to reach the next one.
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Example: Divisibility of Numbers

Statement
Prove: Every integer n ≥ 12 can be written as n = 3a + 7b for
non-negative integers a, b.

Base Cases:
n = 12: 12 = 3 · 4 + 7 · 0.
n = 13: 13 = 3 · 2 + 7 · 1.
n = 14: 14 = 3 · 0 + 7 · 2.

Inductive Step: Assume true for all m where 12 ≤ m ≤ k.
Prove for k + 1:

Since k + 1 ≥ 15, consider m = k + 1 − 3 = k − 2. Since
k − 2 ≥ 12, k − 2 = 3a + 7b.
Then, k + 1 = (k − 2) + 3 = 3a + 7b + 3 = 3(a + 1) + 7b.
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Well-Ordering Property

Definition
Every non-empty set of positive integers has a least element.

Key principle in proofs, especially for strong induction and
contradiction.
Example use: Prove a property by assuming a counterexample
exists, then showing the smallest counterexample leads to a
contradiction.
Connection to induction: Well-ordering ensures the "smallest"
case exists, supporting the base case and inductive reasoning.
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Example: Fundamental Theorem of Arithmetic

Statement
Every integer n > 1 can be expressed as a product of primes
(unique up to order).

Proof by well-ordering (sketch):
Assume the set S of integers n > 1 with no prime factorization
is non-empty.
By well-ordering, S has a least element m.
If m is prime, it is its own factorization (contradiction).
If m is composite, m = a · b where 1 < a, b < m. Since
a, b /∈ S, they have prime factorizations, so m does
(contradiction).
Thus, S is empty, and every n > 1 has a prime factorization.
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Summary

Strong Induction: Assumes all cases n0 ≤ m ≤ k to prove
P(k + 1).
Well-Ordering Property: Every non-empty set of positive
integers has a least element.
Applications: Recursive sequences, divisibility, prime
factorization, and algorithm correctness.
Strong induction is more flexible than standard induction for
complex dependencies.

Key Takeaway
Strong induction and well-ordering provide powerful tools for
proving statements about integers, especially when multiple prior
cases are needed.
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Definitions

Weak Induction (Standard Induction):
Base Case: Prove P(n0) is true.
Inductive Step: Assume P(k) is true, prove P(k + 1).

Strong Induction:
Base Case: Prove P(n0), P(n0 + 1), . . . for necessary starting
values.
Inductive Step: Assume P(m) for all m ≤ k, prove P(k + 1).

Well-Ordering Principle:
Every non-empty set of positive integers has a least element.
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Equivalence Overview

Weak induction, strong induction, and well-ordering are
logically equivalent.
Proof strategy:

1 Show weak induction implies strong induction.
2 Show strong induction implies well-ordering.
3 Show well-ordering implies weak induction.

Equivalence means any one can be used as a foundation for
proofs about integers.

Key Idea
Each principle allows us to prove statements P(n) for all positive
integers n, but they approach it differently.
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Recall

Weak Induction:
Premise, Weakp: P(n0) and For any k, P(k) → P(k + 1)
Conclusion, Weakc : ∀n : (n > n0) → P(n).

Strong Induction:
Premise, Strongp: P(n0) and For any k,
P(1) ∧ . . . ∧ ¶(k) → P(k + 1)
Conclusion, Strongc : ∀n : (n > n0) → P(n).

Well Ordering Principle
Statement, WOP: Under the usual meaning ≤. Any subset N
has a least element (with respect to ≤).
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Weak Induction =⇒ Strong Induction

Proof Sketch
We now prove the rule of inference corresponding to strong
induction using the principle of weak induction. That is,
Strongp → Strongc is a tautology. In other words, if we assume
Strongp, Weakp → Weakc is true, then Strongc is true.

We now construct a proposition P ′(n) which is true if and
only if n ≥ n0 and P(n0), P(n0 + 1), . . . P(n) is true
P ′(n0) is true as P(n0) is true (by Strongp).
Suppose P ′(k) is true for some arbitrary k. This implies that
(A) P(n0) ∧ P(n0 + 1) ∧ . . . ∧ P(n) is true .
By Strongp (A) implies (B) P(k + 1) is true.
By weak induction, the above implies ∀(n > n0) : P(n), which
is the same as Strongc .
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Strong Induction =⇒ Well-Ordering
We need to prove that (Strongp → Strongc) → WOP. We prove
this by contradiction. That is, we show that is, if WOP is false and
(Strongp → Strongc) is true, then we can derive a contradiction.

Proof Sketch (by Contradiction)
Assume well-ordering is false: there exists a non-empty set S of
positive integers with no least element.

Define P(n): “No integer m ≤ n is in S.”
Base Case: Prove P(1) (1 is not in S, as S has no least
element).
Inductive Step: Assume P(m) for all m ≤ k (no integer ≤ k
is in S). Prove P(k + 1) (i.e., k + 1 /∈ S).
If k + 1 ∈ S, it would be the least element (since no m ≤ k is
in S), a contradiction.

P(n) true for all n implies S is empty, proving well-ordering.
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Well-Ordering =⇒ Weak Induction

Given Weakp and WOP, we show that Weakc is true.

Proof Sketch
To prove Weakp : P(n) for all n ≥ n0 using well-ordering:

Suppose Weakp is false. That is, P(n) is false for some
n ≥ n0. Let S be the set of all n ≥ n0 where P(n) is false.
By well-ordering, S has a least element m.
Base Case: m ̸= n0, since P(n0) is true.
Since m is the least element, P(m − 1) is true (for
m − 1 ≥ n0).
Inductive Step: Use P(m − 1) to prove P(m), contradicting
m ∈ S.

Thus, S is empty, so P(n) is true for all n ≥ n0.
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Summary

Weak Induction: Uses P(k) to prove P(k + 1).
Strong Induction: Uses P(m) for all m ≤ k to prove
P(k + 1).
Well-Ordering: Every non-empty set of positive integers has
a least element.
All three are equivalent: proving one implies the others.
Practical use: Choose the principle that best fits the proof
structure (e.g., strong induction for recursive cases,
well-ordering for contradiction).

Key Takeaway
These principles form the foundation for proving statements about
integers, offering flexible approaches to the same logical truth.
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On which sets can you apply Induction

What were the properties of positive integers that we used for
proving induction works?

Positive integers are totally ordered. There exists some order
⪯ amongst the integers such that for any two distinct integers
n1 and n2, we can always decide whether n1 ⪯ n2 or not.
Well-Ordering Property - Every non-empty subset of S has a
least element.
Notice that we any set with the above proof of equivalence
between strong induction, weak induction, and well-ordering
principle will work for any set which satisfies the above
properties.
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Well-Ordered Sets.

What is a Well-Ordered Set?
Given some ordering ≺ on S, a set S along with a total order
≺ (S; ≺) is well-ordered if every non-empty subset of S has a
least element.
Total Order: Given some ordering ≺ For any a, b ∈ S,
exactly one of a ≺ b, a = b, or b ≺ a holds.
Least Element: An element m ∈ S such that m = x or
m ≺ x for all x in a subset of S.

Example
The positive integers N = {1, 2, 3, . . . } with the usual order ≤ are
well-ordered (every non-empty subset has a smallest element).
What about (N; ≥). What about negative integers? Is it possible
to “make” them “Well-Ordered”?What about rational numbers
with ≤? What about real numbers ≤?
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Section 5.3: What are Recursive Definitions?

A recursive definition defines an object in terms of itself.
Two parts:

Base Case: Initial elements or values.
Recursive Step: Rules to construct new elements from
existing ones.

Used for:
Sequences (e.g., Fibonacci numbers).
Sets (e.g., well-formed formulas).
Functions (e.g., factorial).

Example

Factorial: n! =
{

1 if n = 0,

n · (n − 1)! if n ≥ 1.
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Examples of Recursive Definitions

Sequence: Fibonacci numbers
Base: F (0) = 0, F (1) = 1.
Recursive: F (n) = F (n − 1) + F (n − 2) for n ≥ 2.

Set: Strings over alphabet {0, 1}
Base: Empty string ϵ is a string.
Recursive: If w is a string, then w0 and w1 are strings.

Function: Ackermann’s function

A(m, n) =


n + 1 if m = 0,

A(m − 1, 1) if m > 0, n = 0,

A(m − 1, A(m, n − 1)) if m > 0, n > 0.
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What is Structural Induction?

A proof technique for recursively defined objects (sets,
sequences, trees, etc.).
Similar to strong induction, but tailored to the structure of
the definition.
Steps:

Base Case: Prove the property holds for base elements.
Inductive Step: Assume the property holds for all elements
used in the recursive step, then prove it for the new element.

Useful for proving properties of recursive sets or structures.

Key Idea
Follow the recursive definition to ensure the property holds for all
elements.
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Example: Full Binary Trees

A full binary tree is a tree where every node is either a leaf
or has exactly two children (left and right).
Recursive Definition:

Base Case: A single node (leaf) is a full binary tree.
Recursive Step: If T1 and T2 are full binary trees, a new tree
T can be formed with a root node and T1 as left child, T2 as
right child.

Notation:
L(T ): Number of leaves in tree T .
N(T ): Total number of nodes in tree T .
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Example: Theorem - Number of Nodes in a Full Binary
Tree

Statement
For any full binary tree T , the number of nodes N(T ) satisfies:

N(T ) = 2L(T ) − 1,

where L(T ) is the number of leaves in T .

Why Interesting?
Relates leaves to total nodes in a recursive structure.
Useful in computer science (e.g., analyzing binary tree
algorithms).
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Structural Induction for the Proof

We use structural induction to prove the theorem.
Follows the recursive definition of full binary trees:

Base Case: Prove for the simplest tree (single node).
Inductive Step: Assume the property holds for subtrees T1
and T2, prove for a tree T with T1 and T2 as children.

Goal: Show N(T ) = 2L(T ) − 1 for all full binary trees.

31 / 34



Base Case

Single Node (Leaf)
Consider a full binary tree T with a single node.

Number of leaves: L(T ) = 1 (the node is a leaf).
Number of nodes: N(T ) = 1 (only one node).
Check:

2L(T ) − 1 = 2 · 1 − 1 = 1 = N(T ).

The property holds for the base case.
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Inductive Step

Inductive Hypothesis: Assume for full binary trees T1 and
T2:

N(T1) = 2L(T1) − 1, N(T2) = 2L(T2) − 1.

Consider a tree T with root and children T1 (left) and T2
(right).
Compute:

Leaves: L(T ) = L(T1) + L(T2).
Nodes: N(T ) = 1 + N(T1) + N(T2) (1 for the root).

Substitute hypothesis:

N(T ) = 1 + (2L(T1) − 1) + (2L(T2) − 1).

= 1+2L(T1)−1+2L(T2)−1 = 2(L(T1)+L(T2))−1 = 2L(T )−1.

The property holds for T .
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Conclusion and Applications

Conclusion: By structural induction, N(T ) = 2L(T ) − 1
holds for all full binary trees.
Applications:

Analyzing binary tree structures in computer science (e.g.,
binary search trees, expression trees).
Understanding node-leaf relationships in algorithms and data
structures.

Why Interesting?:
Demonstrates structural induction on a recursive, hierarchical
structure.
Connects mathematical proof to practical applications in
computing.
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